\(\int \frac {1}{(d \cos (a+b x))^{5/2} \sqrt {c \sin (a+b x)}} \, dx\) [294]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [A] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 25, antiderivative size = 97 \[ \int \frac {1}{(d \cos (a+b x))^{5/2} \sqrt {c \sin (a+b x)}} \, dx=\frac {2 \sqrt {c \sin (a+b x)}}{3 b c d (d \cos (a+b x))^{3/2}}+\frac {2 \operatorname {EllipticF}\left (a-\frac {\pi }{4}+b x,2\right ) \sqrt {\sin (2 a+2 b x)}}{3 b d^2 \sqrt {d \cos (a+b x)} \sqrt {c \sin (a+b x)}} \]

[Out]

2/3*(c*sin(b*x+a))^(1/2)/b/c/d/(d*cos(b*x+a))^(3/2)-2/3*(sin(a+1/4*Pi+b*x)^2)^(1/2)/sin(a+1/4*Pi+b*x)*Elliptic
F(cos(a+1/4*Pi+b*x),2^(1/2))*sin(2*b*x+2*a)^(1/2)/b/d^2/(d*cos(b*x+a))^(1/2)/(c*sin(b*x+a))^(1/2)

Rubi [A] (verified)

Time = 0.13 (sec) , antiderivative size = 97, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.120, Rules used = {2651, 2653, 2720} \[ \int \frac {1}{(d \cos (a+b x))^{5/2} \sqrt {c \sin (a+b x)}} \, dx=\frac {2 \sqrt {\sin (2 a+2 b x)} \operatorname {EllipticF}\left (a+b x-\frac {\pi }{4},2\right )}{3 b d^2 \sqrt {c \sin (a+b x)} \sqrt {d \cos (a+b x)}}+\frac {2 \sqrt {c \sin (a+b x)}}{3 b c d (d \cos (a+b x))^{3/2}} \]

[In]

Int[1/((d*Cos[a + b*x])^(5/2)*Sqrt[c*Sin[a + b*x]]),x]

[Out]

(2*Sqrt[c*Sin[a + b*x]])/(3*b*c*d*(d*Cos[a + b*x])^(3/2)) + (2*EllipticF[a - Pi/4 + b*x, 2]*Sqrt[Sin[2*a + 2*b
*x]])/(3*b*d^2*Sqrt[d*Cos[a + b*x]]*Sqrt[c*Sin[a + b*x]])

Rule 2651

Int[(cos[(e_.) + (f_.)*(x_)]*(a_.))^(m_)*((b_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-(b*Sin[e +
f*x])^(n + 1))*((a*Cos[e + f*x])^(m + 1)/(a*b*f*(m + 1))), x] + Dist[(m + n + 2)/(a^2*(m + 1)), Int[(b*Sin[e +
 f*x])^n*(a*Cos[e + f*x])^(m + 2), x], x] /; FreeQ[{a, b, e, f, n}, x] && LtQ[m, -1] && IntegersQ[2*m, 2*n]

Rule 2653

Int[1/(Sqrt[cos[(e_.) + (f_.)*(x_)]*(b_.)]*Sqrt[(a_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist[Sqrt[Sin[2*
e + 2*f*x]]/(Sqrt[a*Sin[e + f*x]]*Sqrt[b*Cos[e + f*x]]), Int[1/Sqrt[Sin[2*e + 2*f*x]], x], x] /; FreeQ[{a, b,
e, f}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rubi steps \begin{align*} \text {integral}& = \frac {2 \sqrt {c \sin (a+b x)}}{3 b c d (d \cos (a+b x))^{3/2}}+\frac {2 \int \frac {1}{\sqrt {d \cos (a+b x)} \sqrt {c \sin (a+b x)}} \, dx}{3 d^2} \\ & = \frac {2 \sqrt {c \sin (a+b x)}}{3 b c d (d \cos (a+b x))^{3/2}}+\frac {\left (2 \sqrt {\sin (2 a+2 b x)}\right ) \int \frac {1}{\sqrt {\sin (2 a+2 b x)}} \, dx}{3 d^2 \sqrt {d \cos (a+b x)} \sqrt {c \sin (a+b x)}} \\ & = \frac {2 \sqrt {c \sin (a+b x)}}{3 b c d (d \cos (a+b x))^{3/2}}+\frac {2 \operatorname {EllipticF}\left (a-\frac {\pi }{4}+b x,2\right ) \sqrt {\sin (2 a+2 b x)}}{3 b d^2 \sqrt {d \cos (a+b x)} \sqrt {c \sin (a+b x)}} \\ \end{align*}

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 0.07 (sec) , antiderivative size = 65, normalized size of antiderivative = 0.67 \[ \int \frac {1}{(d \cos (a+b x))^{5/2} \sqrt {c \sin (a+b x)}} \, dx=\frac {2 \cos ^2(a+b x)^{3/4} \operatorname {Hypergeometric2F1}\left (\frac {1}{4},\frac {7}{4},\frac {5}{4},\sin ^2(a+b x)\right ) \sqrt {c \sin (a+b x)}}{b c d (d \cos (a+b x))^{3/2}} \]

[In]

Integrate[1/((d*Cos[a + b*x])^(5/2)*Sqrt[c*Sin[a + b*x]]),x]

[Out]

(2*(Cos[a + b*x]^2)^(3/4)*Hypergeometric2F1[1/4, 7/4, 5/4, Sin[a + b*x]^2]*Sqrt[c*Sin[a + b*x]])/(b*c*d*(d*Cos
[a + b*x])^(3/2))

Maple [A] (verified)

Time = 0.24 (sec) , antiderivative size = 207, normalized size of antiderivative = 2.13

method result size
default \(\frac {\sqrt {2}\, \left (2 \sqrt {-\cot \left (b x +a \right )+\csc \left (b x +a \right )+1}\, \sqrt {\cot \left (b x +a \right )-\csc \left (b x +a \right )+1}\, \sqrt {\cot \left (b x +a \right )-\csc \left (b x +a \right )}\, F\left (\sqrt {-\cot \left (b x +a \right )+\csc \left (b x +a \right )+1}, \frac {\sqrt {2}}{2}\right ) \cos \left (b x +a \right )+2 \sqrt {-\cot \left (b x +a \right )+\csc \left (b x +a \right )+1}\, \sqrt {\cot \left (b x +a \right )-\csc \left (b x +a \right )+1}\, \sqrt {\cot \left (b x +a \right )-\csc \left (b x +a \right )}\, F\left (\sqrt {-\cot \left (b x +a \right )+\csc \left (b x +a \right )+1}, \frac {\sqrt {2}}{2}\right )+\sqrt {2}\, \tan \left (b x +a \right )\right )}{3 b \sqrt {c \sin \left (b x +a \right )}\, \sqrt {d \cos \left (b x +a \right )}\, d^{2}}\) \(207\)

[In]

int(1/(d*cos(b*x+a))^(5/2)/(c*sin(b*x+a))^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/3/b*2^(1/2)/(c*sin(b*x+a))^(1/2)/(d*cos(b*x+a))^(1/2)/d^2*(2*(-cot(b*x+a)+csc(b*x+a)+1)^(1/2)*(cot(b*x+a)-cs
c(b*x+a)+1)^(1/2)*(cot(b*x+a)-csc(b*x+a))^(1/2)*EllipticF((-cot(b*x+a)+csc(b*x+a)+1)^(1/2),1/2*2^(1/2))*cos(b*
x+a)+2*(-cot(b*x+a)+csc(b*x+a)+1)^(1/2)*(cot(b*x+a)-csc(b*x+a)+1)^(1/2)*(cot(b*x+a)-csc(b*x+a))^(1/2)*Elliptic
F((-cot(b*x+a)+csc(b*x+a)+1)^(1/2),1/2*2^(1/2))+2^(1/2)*tan(b*x+a))

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.11 (sec) , antiderivative size = 108, normalized size of antiderivative = 1.11 \[ \int \frac {1}{(d \cos (a+b x))^{5/2} \sqrt {c \sin (a+b x)}} \, dx=-\frac {2 \, {\left (\sqrt {i \, c d} \cos \left (b x + a\right )^{2} F(\arcsin \left (\cos \left (b x + a\right ) + i \, \sin \left (b x + a\right )\right )\,|\,-1) + \sqrt {-i \, c d} \cos \left (b x + a\right )^{2} F(\arcsin \left (\cos \left (b x + a\right ) - i \, \sin \left (b x + a\right )\right )\,|\,-1) - \sqrt {d \cos \left (b x + a\right )} \sqrt {c \sin \left (b x + a\right )}\right )}}{3 \, b c d^{3} \cos \left (b x + a\right )^{2}} \]

[In]

integrate(1/(d*cos(b*x+a))^(5/2)/(c*sin(b*x+a))^(1/2),x, algorithm="fricas")

[Out]

-2/3*(sqrt(I*c*d)*cos(b*x + a)^2*elliptic_f(arcsin(cos(b*x + a) + I*sin(b*x + a)), -1) + sqrt(-I*c*d)*cos(b*x
+ a)^2*elliptic_f(arcsin(cos(b*x + a) - I*sin(b*x + a)), -1) - sqrt(d*cos(b*x + a))*sqrt(c*sin(b*x + a)))/(b*c
*d^3*cos(b*x + a)^2)

Sympy [F(-1)]

Timed out. \[ \int \frac {1}{(d \cos (a+b x))^{5/2} \sqrt {c \sin (a+b x)}} \, dx=\text {Timed out} \]

[In]

integrate(1/(d*cos(b*x+a))**(5/2)/(c*sin(b*x+a))**(1/2),x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {1}{(d \cos (a+b x))^{5/2} \sqrt {c \sin (a+b x)}} \, dx=\int { \frac {1}{\left (d \cos \left (b x + a\right )\right )^{\frac {5}{2}} \sqrt {c \sin \left (b x + a\right )}} \,d x } \]

[In]

integrate(1/(d*cos(b*x+a))^(5/2)/(c*sin(b*x+a))^(1/2),x, algorithm="maxima")

[Out]

integrate(1/((d*cos(b*x + a))^(5/2)*sqrt(c*sin(b*x + a))), x)

Giac [F]

\[ \int \frac {1}{(d \cos (a+b x))^{5/2} \sqrt {c \sin (a+b x)}} \, dx=\int { \frac {1}{\left (d \cos \left (b x + a\right )\right )^{\frac {5}{2}} \sqrt {c \sin \left (b x + a\right )}} \,d x } \]

[In]

integrate(1/(d*cos(b*x+a))^(5/2)/(c*sin(b*x+a))^(1/2),x, algorithm="giac")

[Out]

integrate(1/((d*cos(b*x + a))^(5/2)*sqrt(c*sin(b*x + a))), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{(d \cos (a+b x))^{5/2} \sqrt {c \sin (a+b x)}} \, dx=\int \frac {1}{{\left (d\,\cos \left (a+b\,x\right )\right )}^{5/2}\,\sqrt {c\,\sin \left (a+b\,x\right )}} \,d x \]

[In]

int(1/((d*cos(a + b*x))^(5/2)*(c*sin(a + b*x))^(1/2)),x)

[Out]

int(1/((d*cos(a + b*x))^(5/2)*(c*sin(a + b*x))^(1/2)), x)